Эксклюзивные материалы студентам Рефераты, курсовые, дипломные
Рисунок 1. Методы трансдермальной доставки лекарств. Рисунок из (4).
Методы трансдермальной доставки, применяемые в данное время:
а) Извилистый» путь трансдермальной диффузии может быть облегчен с помощью химических энхансеров — веществ, сравнительно легко преодолевающих липидный барьер и «увлекающих» за собой молекулы доставляемого лекарства. Примером химических энхансеров могут быть липофильные ингредиенты (жирные кислоты, спирты), гидрофильные вещества (гликоли), поверхностно-активные вещества;
б) Низковольтный ионофорез облегчает проникновение веществ трансфолликулярным путем — через волосяные фолликулы и протоки потовых желез.
в) Высоковольтная электропорация временно дестабилизирует липидные бислои, «приоткрывая» дверь доставляемому веществу. Сонофорез (ультразвук) дополнительно может увеличить эффективность путей переноса А и В.
г) Микроиглы и термопорация создают в коже отверстия микронного размера, через которые может осуществляться транспорт. Из-за малости отверстий, эти процедуры безболезненны, а сами отверстия очень быстро затягиваются.
Биологический мир буквально наполнен наночастицами — это ферменты, молекулы ДНК и РНК, рибосомы, клеточные везикулы, вирусы и пр. Отличительной особенностью таких объектов является их способность к агрегации и самоорганизации. Это свойство активно используется при создании искусственных конструкций, имитирующих реальные биологические структуры. Яркий пример представляют собой различные однокомпонентные и мультикомпонентные липосомы, которые способны при определенных условиях формироваться из раствора смеси липидов. Часто на практике используют и уже существующие в природе биологические наночастицы. Например, различные вирусы активно применяют для генной модификации (трансфекции) клеток. Показано, что аденовирусы с подавленной системой репликации могут быть эффективно использованы и для местной неинвазивной вакцинации через кожу (доставке антигенов к клеткам Лангерганса, присутствующим в коже).
Рисунок 2. 1 — липосома и аденовирус; 2 — полимерная наноструктура; 3 — дендример; 4 — углеродная нанотрубка. Рисунок из (4).
Также к ним относят липидные нанотрубки, наночастицы и наноэмульсии, циклические пептиды, хитозаны, наночастицы на основе нуклеиновых кислот.
Полимерные материалы обладают рядом преимуществ
, определяющих эффективность их применения в технологиях доставки, — биосовместимость, способность к биодеградации, функциональная совместимость. Типичными соединениями, которые представляют основу для создания ПнЧ, являются полимолочная и полигликолевая кислоты, полиэтиленгликоль (ПЭГ), поликапралактон и др., а также их различные сополимеры. ПЭГ часто используют для повышения стабильности различных молекулярных переносчиков. Например, липосомы, покрытые ПЭГ («стелс-липосомы»), по сравнению с обычными, менее подвержены биодеградации, в результате чего обладают заметным пролонгированным действием.
Дендримеры являются уникальным классом полимеров с сильно разветвлённой структурой. При этом их размер и форма могут быть очень точно заданы при химическом синтезе. Дендримеры получают из мономеров, проводя последовательные конвергентную и дивергентную полимеризации (в том числе используя методы пептидного синтеза). Типичными «мономерами», используемыми в синтезе дендримеров, являются полиамидоамин (ПАМАМ) и аминокислота лизин. «Целевые» молекулы связываются с дендримерами либо путём образования комплексов с их поверхностью, либо встраиваясь глубоко между их отдельными цепями. Контролируемые размеры и свойства поверхности, а также стабильность дендримеров делают их весьма перспективными для использования в качестве переносчиков. На животных моделях показана эффективность их применения для трансдермальной доставки ряда препаратов.
Нанотрубки и фуллерены являются одними из самых «узнаваемых» наноструктур — практически ни один популярный текст про нанотехнологии не обходится без их изображений. За открытие этой новой формы существования углерода Р. Керл, Р. Смолли и Г. Крото в 1996 г. были удостоены Нобелевской премии по химии. Эти структуры, образованные только атомами углерода, сегодня в промышленных масштабах получают термическим распылением углеродсодержащей сажи в атмосфере инертного газа при пониженном давлении в присутствии катализатора. Нанотрубки обладают повышенным сродством к липидным структурам; при этом они способны образовывать стабильные комплексы с пептидами и ДНК-олигонуклеотидами, и даже инкапсулировать эти молекулы. Это определяет их применение в области создания эффективных систем доставки вакцин и генетического материала.
Неорганические наночастицы. К этому классу обычно относят наноструктуры, полученные на основании оксида кремния, а также различных металлов (золото, серебро, платина). При этом часто такая наночастица имеет кремниевое ядро и внешнюю оболочку, сформированную атомами металла. Использование металлов позволяет создавать переносчики, обладающие рядом уникальных свойств. Так, их активность (и в частности, высвобождение терапевтического агента) может быть модулирована термическим воздействием (инфракрасное излучение), а также изменением магнитного поля (возможность адресной доставки). При этом показано, что металлические наночастицы могут эффективно проникать вглубь эпидермиса.
Использование описанных выше наночастиц в медицине позволит не только эффективно доставлять биологически активные молекулы сквозь различные барьеры организма, которые они не способны преодолевать самостоятельно (кожный, гематоэнцефалический), но и существенно изменять характер действия препарата. Например, трансдермальная доставка, по сравнению с доставкой через кровяное русло, позволяет избежать нежелательных побочных эффектов, снизить эффективную дозу препарата за счет существенного повышения его локальной концентрации. Кроме того, было показано, что у терапевтических молекул, доставляемых в организм с помощью наночастиц, меняется фармакокинетика. Если для препаратов, попадающих в организм перорально или в результате инъекции, увеличение концентрации во времени описывается характерной кинетической кривой первого порядка (концентрация экспоненциально увеличивается во времени), то в случае использования наночастиц наблюдается идеальная временная зависимость нулевого порядка (равномерное увеличение концентрации препарата во времени). Это позволяет более точно планировать дозировки препарата и пролонгировать его действие.
Смотрите также
Депрессивная фаза маниакально-депрессивного психоза
Маниакально-депрессивный
психоз (МДП) или биполярное аффективное расстройство (БАР) - заболевание,
протекающее в форме депрессивных и маниакальных фаз (приступов), в промежутках
между котор ...
Паста (Pasta)
Пасты – это
суспензионные мази, содержащие свыше 20% твердой фазы лекарственного вещества.[1]
Они характеризуются более
плотной и густой по сравнению с обычными суспензионными мазями консистенц ...
Выводы
На основании приведенных выше примеров лечения пациентов
с аутоиммунными заболеваниями можно сделать вывод о наличии у них
динамик либо совершенных внутри семейной системы пациентов тяжелы ...